我们写读后感是为了总结阅读后的思考和感悟,提升理解能力,在撰写读后感的过程中,我们常常会惊喜地发现自己的思维变得更加缜密,录取选题网小编今天就为您带来了海之美读后感5篇,相信一定会对你有所帮助。
海之美读后感篇1
?数学之美》,一个从事多年工作的谷歌研究员眼中的数学。令我大饱眼福的是,大学里面的数学知识竟能如此广泛运用到了计算机行业中。
在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。
在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。
最近刚开学也没什么事,所以就想随便找几本书看一下,但最好别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本12年5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。
因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。
写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。
废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别最好(虽然列举了这么多,其实有些不懂也没关系……),所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。
吴军是清华大学毕业的,之前任职于google,后来到了腾讯,这些文章都是发表在google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的(当然,必须承认第一个想到这些方法的人还是非常了不起的……)。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非it领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、多维空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。
除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等以及很多中国企业的批评,一是的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。
总结一下呢,《数学之美》事实上不能带给你编程能力的提升,也没法让人的数学水平有显着的提升,但它在很大程度上让你跳出教科书式的繁琐细节的束缚,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。
海之美读后感篇2
如果要评选最令人痛恨的科目,估计非数学莫属了。
人类花了几百年时间才形成了现代数学完备的理论体系,结果却要求我们在3-5年里全部学完。这显然是要杯具的。也显然是除了背公式就没有其他办法的。
数学,小学的时候全是数字,初中的时候加入了xy,高中的时候基本没数字了,大学高数不但数字少,而且各种符号满天飞。
其实想想就明白了,古时候的人们真的是闲的才去研究数学的吗?明显是在工程工作和实际生活中遇到了难题,需要数学这个科学的皇后来解决,于是人们才去研究的数学啊。数学是与应用分不开的啊。为什么在学习的过程中,却被生生剥离了实际呢?《数学之美》里面的一句话提醒了我,几乎所有的科学家都是数学家,但是很少有数学家同时是语言学家。
会做事而不会讲事的人,编写了我们的教材。
如果《数学之美》的作者吴军执笔重写我们的数学教科书,说不定中国会出现更多的数学家。
由于每个月都买1-2百的书,对什么是好书,我现在心里是越来越有底了。其实标准很简单,能不罗嗦的把事情给讲清楚了,就是好书。从这个标准出发,我杯具的发现,国内的教科书极少有满足这个简单的标准的。大部分是生搬硬套,大杂烩一锅炖。
本着事情要讲清楚的原则,现在的数学教科书,就应该把课后习题给详解。把公式隐含的条件反复的强调,而不是像躲猫猫一样找死不见,解体的时候应该循序渐进,适量更新,而不是几十年不变。那些公式什么的,你多解释几遍,多用文字讲解一下,多写点有用的中文,少推导些万年不用的公式,少写点“容易得出”“易推导出”这些无用的文字,增加一下让教科书的可读性,行不行?别整的公式套公式,显得你编书的人很牛逼似地,其实你就是一心虚的。心虚怕讲得多错的多,被人质疑你的权威性,逼就是有错不改,强卖垃圾,编的这么烂,如果不是指定教材,放到市场上有人买才怪。最恶心的还垄断,还不给别人编。
?数学之美》是把数学怎么简单,怎么好理解就怎么讲。
教科书是公式一摆,撒手不管,习题雷同例题,与实际脱节,任外面山洪海啸,我自岿然不动。
中国的教科书啊,学一下国外的吧。北大出版社翻译出版的《经济学原理》虽然是教科书,但是凡是对经济有一丁点兴趣的人,都会对这套书称赞不已。这才是教科书应有的样子啊。
海之美读后感篇3
人们发现真理的形式上从来都是简单的,而不是复杂和含混的。
——牛顿
自小就学数学的我,并不觉得它是美好的。于我而言,数学就像紧箍咒一样,不能提,一提。就头疼。
而看了吴军博士所写的《数学之美》后,我对数学的感觉,从以前的被动获取和勉强学习,变成了强烈热爱和主动积极的学习。这原因就在于我发现了它的价值,它的一枝独秀,不可或缺的地位,数学的博大精深和对其相关的各类事业的发展的价值已使我深深陶醉其中。这本书中有很多复杂且长的公式,但这并不妨碍大众的阅读,因为它并非在于让你了解更多it领域的知识,而是用了大量篇幅介绍各个领域的典故,让我们感受数学思维。这就像李欣教授所说:“成为一个领域的大师有其偶然性,但更有其必然性。其必然性就是大师们的思维方法。”
英国哲学家弗朗西斯·培根在《论美德》这篇文章中讲:“美德就如同华贵的宝石,在朴素的衬托下最显华丽。”数学的美妙,也恰恰在于一个好的思维,好的方法。
在《数学之美》十四章,我被它的标题吸引到了。“余弦定理和新闻的分类”,这俩看似八竿子打不着。却有着紧密的联系。可以说,新闻的分类很大程度上依赖的是余弦定理。我们都知道,计算机处理一个问题是让他去算,而不是像人类一样理解了它,再去解决。而科学家们遇到这个问题,却用了另一种思维,他们把文字的新闻变成一组可计算的数字,然后再设计一个算法来算出任意两篇新闻的相似性。稍详细一些就是:对于一篇新闻中的所有实词。计算出它们的tf—idf值,再把这些值按照其在对应词汇表的位置依次排列就得到一个向量,这即新闻的特征向量。这时,就可以通过计算两个向量夹角来判断对应的新闻的接近程度,这也就要用到余弦定理了。我在必修五数学书上学到余弦定理时,很难想象它可以用来对新闻进行分类。在这里我又一次看到了数学工具的用途。
在书中,我也了解到了数学的发展实际上是不断的抽象和概括的过程。这些抽象了的方法看似离生活越来越远,但他们最终能找到应用的地方,布尔代数便是如此。
布尔代数的.简单不能再简单了。运算的元素只有两个0和1,基本的运算只有“与”、“或”和“非”。几乎就是我们现在所学的“判断命题真假”。在布尔代数提出后的80多年里,他确实没有什么像样的应用。直到1938年香农在他的硕士论文中指出,布尔代数来实现开关电路。才使得布尔代数成为数字电路的基础。正是依靠这一点,人类用一个个开关电路最终“搭出”电子计算机。
这些,都能体现作者“简单即是美”的思想。他在书中也写道:“数学的精彩之处就在于简单的模型可以干大事。”这些,也都是我从未感受到过的。并且,在这本书中,作者也用了不少篇幅来介绍通信领域的世界级专家,让我对真正的世界级学者有更多的了解和理解,比如贾里尼克,google ak—47的设计者——阿米特·辛格博士,自然语言处理的教父米奇·马库斯等等。
爱因斯坦说过:“从希腊哲学到现代物理学的整个科学史中。不断有人力图地表面上极为复杂的自然现象归结为几个简单的基本概念和关系,这就是整个自然哲学的基本原理。”这本书把数学在it领域的美丽予以了精彩表达,我也知道,把一件复杂的事用简单的语言表达出来,并非易事,这应该也是各界人士都对这本书予以好评的原因吧。
当然,我也明白,欣赏美不是终极目的,更值得我们追求的是创造美境界。
还有,希望未来的自己,无论生活好与坏,都能少一点浮躁,多一点踏实和对自然科学本质的好奇求知。
海之美读后感篇4
读完本书,第一感受:次奥!原来数学如此多的原理模型概念都可以用去解决各种it技术问题啊。特别是语言识别和自然语言处理这类问题完全就是建立在数学原理之上的。总之,这本书就是用非常深入浅出的话去说明如何用数学方法去解决计算机的各种工程问题。这是一本讲道,而不是术的书。 要完全读懂这本书,我觉得至少需要掌握这三门课:高等数学,离散数学,还有概率论与数理统计。唉,我当初数学学得太水了,还挂了高数啊!有好的概念没看懂,以后有时间在好好看吧。如果想搞计算机研究的话,数学基础必不可少,别总在抱怨各种数学课上的东西一辈子都用不着。
发现作者对人类自然发展的认识非常深,其从语言,文字,数学的产生发展,信息的传播记录得出了这个结论:信息的产生传播接收反馈,和今天最先进的通信在原理上没有任何差别。就算是科学上最高深的技术,那也是模拟我们生活中的一些基本原理。
我们今天使用的十进制,就是我们扳手指扳了十次,就进一次位。而玛雅文明他们数完了手指和脚指才开始进位,所以他们用的是二十进制。实际上阿拉伯数字是古印度人发明的,只是欧洲人不知道这些数字的真正发明人是古印度,而就把这功劳该给了“二道贩子”阿拉伯人。
语言的数学本质
任何一种语言都是一种编码方式,比如我们把一个要表达的意思,通过语言一句话表达出来,就是利用编码方式对头脑中的信息做了一次编码,编码的结果就是一串文字,听者则用这语言的解码方法获得说话者要表达的信息。
自然语言处理模型
计算机是很笨的,他们唯一会做的就是计算。自然语言处理在数学模型上是基于统计的,说一个句子是否合理,就看看他出现的可能性大小如何,可能性就是用概率来衡量,比如一个句子,出现的概率为1/10^10,另一个句子出现的概率为1/10^20,那么我们就可以说第一个句子比第二个句子更加合理。当然这要求有足够的观测值,他有大数定理在背后支持。
最早的中文分词方法
这句话:“同学们呆在图书馆看书”,如何分词?应该是这样:同学们/呆在/图书馆/看书。最先的方法是北航一老师提出的查字典方法,就是把句子从左道右扫描一遍,遇到字典里面出现的词就标示出来,遇到复合词如(北京大学)就按照最长的分词匹配,遇到不认识的字串就分割成单个字,于是中文的分词就完成了。但是这只能解决78成的分词问题,但是“像发展中国家”这种短语它是分不出来的。后来大陆用基于统计语言模型方法才解决了。
隐含马可夫模型(没这么看懂)
一直被认为是解决打多数自然语言处理问题最为快速有效的方法,大致意思是:随机过程中各个状态的概率分布,只与他的前一个状态有关。比如对于天气预报,我们只假设今天的气温只与昨天有关而与前天没有关系,这虽然不完美,但是以前不好解决的问题都可以给出近视值了。
一个让我印象深刻的观点:
小学生和中学生其实没有必要花那么多时间去读书,其觉得最主要的是孩子们的社会经验,生活能力,和那时候树立起来的志向,这将帮助他们一生。而中学生阶段花很多时间比同伴多读的课程,在大学以后可以用非常短的时间就可以读完。因为在大学阶段,人的理解能力要强很多,比如中学要花500小时才能搞明白的内容,大学可能花100小时就搞定了。学习和是一个人一辈子的事情,很多中学成绩好的人进入大学后有些就表现不太好了,要有不断学习的动力才行。
余弦定理和新闻分类
我在新浪干过一年多新闻,这篇认真看了一篇,很吃惊原理cos x与新闻分析也有关系啊。google的新闻服务是由计算机自动整理分类的。而传统的媒体如门户网站是让编辑读懂新闻,找到,再分类分级别的,真苦逼啊!计算机自动分类原理是这样:如一篇新闻有10000个词,组成一个万维向量,这个向量就代表这篇新闻,可以通过某种算法表达这个新闻的类型,如果两个向量的方向一致,说明对应的新闻用词一致,方向可用夹角表示,夹角可用余弦定理表示,所以当夹角的余弦值接近于1时,这两篇新闻就可以归为一类了。
没看懂的东西:
布尔代数:布尔代数把逻辑学和数学合二为一,给了我们一个全新的视角看世界。
网络爬虫的基本原来是利用了图论的广度优先搜索和深度优先搜索。
搜索引擎的结果排名用了稀疏矩阵的计算。
地图最基本的计算是利用了有限状态机和图论的最短路径。
密码学原理,最大熵模型,拼音输入法的数学模型,布隆过滤器,贝叶斯网络等等。
任何事物都有它的发展规律,当我们认识了规律后,应当在生活工作中遵循规律,希望大家透过it规律的认识,可 以举一反三的总结学习认识规律,这样有助于自己的境界提升一个层次。
任何问题总是能找到相应的准确数学模型,一个正确的数学模型在形式上应当是简单的,一个好的方法在形式上应当也是简单的。简单才是美。
海之美读后感篇5
前一阵子因兴趣研究cmusphinx这套库的应用不得要领,就去查看了下一些语音识别的基本原理的文章,偶然碰到了数学之美。其实浪潮之巅也是因此开始看的、结果先一步看完了,毕竟一本历史书,一本介绍数学和语言处理的,难度不同
说实话,因为初中高中荒废了太多时间,我的英文和数学基础比较差,我大学的数学都是勉强修过的。一直以来数学对我是一个很恐怖的学科,也不知道为什么计算机专业对数学要求比较高。我个人就是数学分数很低,但是专业课学的还不错,唯一好点的数学科目就是离散数学吧,另外的工科数学分析和高等代数都是惨不忍睹的
看完这本书后,我发现我还真是低估了数学的作用,一个复杂的语言识别过程,用统计语言模型竟然用那么简单的数学模型就解决了,这对我的冲击很大。另一个对我影响比较大的就是余弦定理和新闻的分类。以前那些各种三角函数的变换、三角函数,各种向量,各种空间图形在我印象中就只能用于画设计图,或者搞空间物理化学等基础学科的应用上,想着“这种东西和计算机编程有什么关系?要计算角度,库里不都提供了吗?”,哪成想到改变一下思路,改变一下方法,就简单的把那么复杂的分裂问题给解决了。现在想想我当初想法还真是幼稚啊,可惜覆水难收,过去的时间已经回不来了,但至少我现在明白了数学的重要性,总能想办法弥补的。
不得不说国内的教科书还真是太死板了。很多书上,先不说没讲应用领域和这个能干吗,有些教科书连推导过程也没说明白。像我大学时候的那几本高代高数的教科书,在某一步关键的过程写一句“显而易见”,然后就莫名其妙的出现了结果,这让我们基础差的人情何以堪啊,更何况我问了那些数学好的,他们想推导出那一步也要想好久。后来换了一下同济大学版,发现同样的定理,同样的范围,就是理解起来容易了不少。果然好书和差一点的书差别真不少。所以我就在网上整理了一些好的数学书籍,等会儿x就贴到文后,以后慢慢补。
"技术分为术和道两种,具体的做事方法是术,做事的原理和原则是道。这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余。” ,然后吴军先生用搜索反作弊的例子漂亮的解释了这两种差别。我以前做过的项目里,如果出现没想过的情况,就加一个异常处理处理特殊情况,本来很简单的东西,愣是被我搞复杂了。现在想回来,那时候境界太低,连开始的本质和原理都没弄清楚,就埋头搞下去了,以后要多注意点。
我一向喜欢实用性强的方法和工具,在这书里我特别喜欢阿米特·辛格博士的那一章。吴军博士就用寥寥几页的描述中讲解了辛格博士的处理事情的方法和原则,先帮用户解决主要的问题,再决定要不要纠结在次要的部分上;要知道修改代码的所作所为,知其所以然;能用简单方法解决就用简单的,可读性很重要。
不过中间有两个部分没搞明白,最大熵模型和贝叶斯网络,没搞懂为什么能解决那些问题。贝叶斯网络还能稍微理解,少了马尔科夫链的线性约束,更自由;但最大熵模型真搞不懂为什么那么好用,以后继续研究。
总之这是一本很好的书,推荐大家读一下。
海之美读后感5篇相关文章:
★ 村庄令读后感5篇
★ 飞机的读后感5篇
★ 读书读后感5篇