一份全面的教案能够帮助教师整合多种教学资源,提高效率,教案的反思过程能够帮助教师不断提升自身的教学水平,录取选题网小编今天就为您带来了上和下数学教案最新6篇,相信一定会对你有所帮助。
上和下数学教案篇1
一、教学内容
人教版《义务教育课程标准实验教科书》三年级上册p7-8千米的认识。
二、教学准备
课前让学生走走100米的一段路,感受100米的路有多长,同桌准备一根米尺与课件。
三、教学目标与策略选择
1、目标确定
(1)让学生在具体的情境中认识这一长度单位,并通过操作、推想、交流等活动感知1千米有多长,初步建立1千米的观念。
(2)知道1千米=1000米,并能进行简单的化聚。
(3)在具体的生活情境中认识千米,让学生感受数学与实际生活的联系,在与同伴交流中体验学习数学的愉悦心情。
2、教学策略选择
(1)让学生成为建构新知的主人
数学教学过程是学生对有关的数学学习内容进行探索、实践与学习的过程。学生是活动的主体,教师只是通过引导、组织及与学生的互动充分调动学生的积极性和主动性。在建构新知时,要以学生为主,让他们去亲自体验。本节课我主要通过以下环节突破重点:第一,回忆活动,建立表象。课前让学生通过“走一走100米”、“扣一扣时间”、“数一数步数”等活动,建立学生对100米的表象,从而让学生推出:10个100米是1千米,在100米的路上来回5次是1千米,大约走15分钟是1千米......第二,学生描述1千米的长度。学生对千米的初步认识后,我放手让学生利用身边的数据来描述1千米的长度,通过小组合作学习,讨论,留给学生充分的学习时间和广阔的学习空间,让学生自己学习。
(2)让学生感受数学与生活的联系
新课标强调与现实生活的联系,要求数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,教师可以根据教材和学生心理特点,抓住日常生活中的感性材料,在课堂上创设学生所熟悉的生活情境,帮助学生理解抽象概念。例如在教学“千米的认识”时,我就录制一段录像放给学生观看,就可以告诉学生,我们刚才走了1千米。运用媒体教学一方面学生亲身体会到1千米到底有多远,把一个抽象的概念具体化,另一方面,学生观看时,每看到一处自己熟悉的事物,就指着说:这就是“什么”。学生情绪高涨,提高课堂教学效果。这些信息的来源于学生的生活和社会生产实际,拉近了学生与千米的距离,从而也达到了本课的教学目标,使学生体会到原来千米就在我们身边,原来数学就在我们的生活中。
四、教学流程设计及意图
教学流程
设计意图
一、情境导入(课件出示一些路程指示牌)
平阳瑞安
50千米38千米
乐清灵昆
45千米20千米
师:小朋友见过这些牌子吗?你能看明白指示牌的意思吗?
师:千米也叫公里,是比米大的长度单位,生活中以千米作长度单位是很常见的,1千米有多长呢?今天这节课我们就来认识千米。(板书课题)
二、建立模型
(一)初步感知1000米的长度
师:昨天我们一起测量了从百里路小学的校门口到丽都美容院刚好是100米的路程,同学们分小组走了走这100米的路程
(课件出示图片,引起回忆后交流)
汇报交流:
师:小朋友走100米大约用了多少时间?走100米大约用了多少步?
师:从校门口到丽都美容院是100米,1000米里面有几个这样的100米呢?(板书:10个100米)
师:根据这100米的路程,你还可以怎样描述1000米的长度?(一般学生会从来回次数、所需的时间和总的步数来回答)
从学生熟悉的生活事物引入,增强了数学知识的现实感和亲切感,课伊始就吸引学生的目光,为学习新知奠定了良好的心理基??
心理学研究表明:当学习的材料与学生已有的知识和经验相联系时,才能激发学生学习和解决问题的兴趣,数学才是有生命力的。教师找准了教学内容与学生知识经验的“切合点”,在学生建立
100米长度的表象基础上感知1千米的长度,在真实的生活体验中引领学生建立数学模型。
?备芽若学生提出同学间所需时间和总的步数相差较大,可以让学生讨论为什么会有相差,然后得出全班的大约值。
(二)介绍1千米=1000米
1000米用“千米”做单位,可以写作1千米。
板书:1千米=1000米
(三)进一步感知1千米的长度
师:我们用10个100米来描述1千米的长度,走1千米大约用15分钟的时间,走1千米大约用了20xx步等分式来描述1千米的长度,同学们能不能观察、测量自己身边的物体长度,再来推想1千米有多少个这样的物体?用你自己的方式来描述1千米的长度。
1、观察、测量后与同桌交流。
2、全班交流汇报
(四)强化感知1千米的长度
课件出示学校周边的地图:从学校向右走,从校门口-麻行僧街-大榕树-百里东路-市二医大约1千米。从学校向左走,从校门口-一百超市--江心码头-江滨西路-郭公山-勤奋
水闸-现代概念大约1千米
师:其中第2条路是老师每天回家的必经之路,老师骑摩托车以每小时40千米的速度从学校出发到现代概念大约用了1分30秒,现在就让我们一起随着镜头来感受一下(课件播放录象)。
三、千米和米的换算
(一)教学换算
师:千米除了表示比较远的路程以外,它还可以用来表示河的长度、桥的长度、水的深度、山的高度,以及描述速度等......(边说课件边出示图片)
师:火箭的速度大约是每秒4千米,也就是多少米?
板书:4千米=()米(让学生说说你是怎样想的?)
师:雅鲁藏布大峡谷水深约达5000米、南京长江大桥的长约6000米,能把它们成用千米作单位的吗?
板书:5000米=()千米6000米=()千米
(同桌互说想法,然后全班交流)
(二)练习:
1、9000米=()千米800米+200米=()千米
4千米=()米3千米-1000米=(米
2、把每小时行的路程与合适的交通工具连一连。(略)
(三)解释与拓展
课件出示高速公路的指路标志,限速标志,汽车、摩托车上的速度表等让学生能说说指路标志、限速标志的意思。
四、总结评价
师:通过今天这节课的学习让你感到最深刻的地方在哪?最大的收获是什么?
五、家庭作业
与同伴在家的附近或学校附近走1千米的路程,体验1千米有多远。
此环节的设计让学生通过多方位、多角度的材料感知建立1千米的丰富表象,学生举例身边的事物并用具体的数据来描述1千米的长度,给学生提供操作、交流与想象的时间和空间,在提供学习资料的基础上现场生成学习材料,在交流中进一步感受1千米的.具体长度,在头脑中比较清晰的建立1千米长度的“模型”,培养了学生的数感。
在学生具有大量的感性基础和丰富的表象积累上,以直观、动态的录象播放让学生感知摩托车行驶1千米路程,用另一种的方式感知和感受1千米,强化了对1千米有多长的感受性。
此环节的设计关注学生的心理需求,联系生活提供丰富学习材料作为数学教学的活教材,使数学不显得枯燥而是充满真实感和亲切感,感受数学与生活密切的联系,体验学习数学的价值
四、教学片段实录
片段一:初步感知1000米的长度
师:昨天我们一起测量了从百里路小学的校门口到丽都美容院刚好是100米的路程,同学们分小组走了走这100米的路程
(课件出示图片,引起回忆后交流)
汇报交流:
师:小朋友走100米大约用了多少时间?(大约用了1分30秒)走100米大约用了多少步?(大约走了200步)
师:从校门口到丽都美容院是100米,1000米里面有几个这样的100米呢?(板书:10个100米)
师:根据这100米的路程,你还可以这样描述1000米的长度?
生:从美容院回到校门口一个来回是200米,1000米里面有5个来回.
生:走100米大约用了1分30秒,按这样计算,走1000米大约需要15分钟。
生:走100米大约用200步,走1000米大约需要走20xx步
......
片段二:进一步感知1千米的长度
师:我们用10个100米来描述1千米的长度,走1千米大约用15分钟的时间,走1千米大约用了600步等分式来描述1千米的长度,同学们能不能观察、测量自己身边的物体长度,再来推想1千米有多少个这样的物体?用你自己的方式来描述1千米的长度。
(1)观察、测量后与同桌交流。
(2)全班交流汇报:
生1:教室的2块地砖的长度大约是1米,20xx块这样地砖的长度约是1千米。
生2:一根米尺长1米,1000根米尺连接起来就是1千米。
生3:教室门高约2米,500个门叠起来的高度约是1千米,快冲天了!
生4:一张课桌的长约1米,1000张课桌连起来约1千米
生5:一个同学把两臂张开伸直大约是1米,1000个同学手拉手大约是1千米。
生6:教室的黑板长约4米,250个黑板连起来大约是1千米。
生7:学校操场跑一圈是200米,跑5圈是1千米。
生8:体育中心泳池的泳道长是50米,游10个来回就是1千米。
上和下数学教案篇2
一、内容和内容解析
(一)内容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.
(二)内容解析
现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.
二、目标和目标解析
(一)教学目标
1.理解不等式的概念
2.理解不等式的解与解集的意义,理解它们的区别与联系
3.了解解不等式的概念
4.用数轴来表示简单不等式的解集
(二)目标解析
1.达成目标1的标志是:能正确区别不等式、等式以及代数式.
2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.
3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.
4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.
三、教学问题诊断分析
本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.
因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.
四、教学支持条件分析
利用多媒体直观演示课前引入问题,激发学生的学习兴趣.
五、教学过程设计
(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.
(二)立足实际引出新知
问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?
小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)
1.从时间方面虑:
2.从行程方面:<>50 3.从速度方面考虑:x>50÷
设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.
(三)紧扣问题概念辨析
1.不等式
设问1:什么是不等式?
设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.
2.不等式的解
设问1:什么是不等式的`解?设问
2:不等式的解是唯一的吗?由学生自学再讨论.
老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式
3.不等式的解集
设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问
2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.
老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.
4.解不等式
设问1:什么是解不等式?由学生回答.
老师强调:解不等式是一个过程.
设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.
(四)数形结合,深化认识
问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题
2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.
设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.
(五)归纳小结,反思
提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题
1、什么是不等式?
<的解集,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它与不等式的解有什么区别与联系?
4、用数轴表示不等式的解集要注意哪些方面?
设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.
(六)布置作业,课外反馈
教科书第119页第1题,第120页第2,3题.
设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.
六、目标检测设计1.填空
下列式子中属于不等式的有___________________________
①x +7>
②②x≥ y + 2 = 0④ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.
2.用不等式表示① a与5的和小于7 ② a的与b的3倍的和是非负数
③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.
上和下数学教案篇3
【活动目标】
1、能区别两个物体之间的上下关系。
2、在操作中能正确使用方位词表达两者之间的`上下关系。
3、体验集体游戏的快乐。
【活动过程】
一、常规活动:指五官
幼儿坐在椅子上玩“指五官”,教师加快速度增加其趣味性。
二、师生共同探索。
三、户外活动时,引导幼儿观察树上、树下、天空、大地等自然界景物,再说出其上下关系。
四、活动评价,表扬做得又快又正确的幼儿。
上和下数学教案篇4
本课题教时数:本教时为第2教时备课日期9月9日
教学目标
1、使学生理解整数除法分数的计算方法,并能正确地进行计算。
2、培养学生分析、推理和概括等思维能力。
教学重难点
整数除以分数的计算方法。
教学准备
教学过程设计
教学内容
师生活动
备注
一、复习旧知
二、教学新课
一、 巩固练习
四、小结。
五、作业
1、口算
3542112
分数除以整数通常是怎样计算的?
2、复习第(1)题
学生口答算式与结果。
这一题已知什么数量,要求什么数量?按怎样的数量关系求?
出示数量关系式:速度=路程时间
3、口答填空
3/10小时是()个1/10小时。
1小时是()个1/10小时。
4、引入新课
1、教学例2
这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?
(183/10)
画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?
根据学生的'回答把这条线段平均分成10份,其中的3份用颜色线画出。
师边述说边画线段。
问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?
要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?
根据回答把线段图补充完整。
讨论:按这样来想,你认为第一步求什么?怎样求?
(1)1/10小时行的千米数是:183
为什么要用183?183能不能转化成用乘法来计算?
讨论:1/10小时行的千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?
(2)1小时行的千米数是:181/310
(3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?
问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?
从上面的推想过程看出,183/10转化成什么样的计算了?
比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?
2、小结。
1、练一练1
2、练一练2整数除以分数是怎样计算的?
3、练习八2整数除以分数和整数乘分数在计算时有什么不同?
4、练习八3
分组练习
做完后问:每一组的两道题有什么不同地方?计算时有什么共同的地方?
说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。
练习八、1、4、5
181/310
=18(1/310)
=1810/3
课后感受
此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的前提下更多的放手让学生自己去探索规律、寻求解题方法。
上和下数学教案篇5
学习目标
1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;
2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
旧知提示 (预习教材p89~ p91,找出疑惑之处)
复习1:什么叫零点?零点的等价性?零点存在性定理?
对于函数 ,我们把使 的实数x叫做函数 的零点.
方程 有实数根 函数 的图象与x轴 函数 .
如果函数 在区间 上的图象是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.
复习2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.
解法:第一次,两端各放 个球,低的那一端一定有重球;
第二次,两端各放 个球,低的那一端一定有重球;
第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.
思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求 的零点所在区间?如何找出这个零点?
新知:二分法的思想及步骤
对于在区间 上连续不断且 0的函数 ,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).
反思: 给定精度,用二分法求函数 的零点近似值的步骤如何呢?
①确定区间 ,验证 ,给定精度
②求区间 的中点 ;[]
③计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 );
④判断是否达到精度即若 ,则得到零点零点值a(或b);否则重复步骤②~④.
典型例题
例1 借助计算器或计算机,利用二分法求方程 的近似解.
练1. 求方程 的解的个数及其大致所在区间.
练2.求函数 的一个正数零点(精确到 )
零点所在区间 中点函数值符号 区间长度
练3. 用二分法求 的近似值.
课堂小结
① 二分法的概念;②二分法步骤;③二分法思想.
知识拓展
高次多项式方程公式解的探索史料
在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的`函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(abel)和伽罗瓦(galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点近似解的方法,这是一个在计算数学中十分重要的课题.
学习评价
1. 若函数 在区间 上为减函数,则 在 上( ).
a. 至少有一个零点 b. 只有一个零点
c. 没有零点 d. 至多有一个零点
2. 下列函数图象与 轴均有交点,其中不能用二分法求函数零点近似值的是().
3. 函数 的零点所在区间为( ).
a. b. c. d.
4. 用二分法求方程 在区间[2,3]内的实根,由计算器可算得 , , ,那么下一个有根区间为 .
课后作业
1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()
a.-1 b.0 c.3 d.不确定
2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,则f(x)=0在[a,b]内()
a.至少有一实数根 b.至多有一实数根
c.没有实数根 d.有惟一实数根
3.设函数f(x)=13x-lnx(x0)则y=f(x)()
a.在区间1e,1,(1,e)内均有零点 b.在区间1e,1, (1,e)内均无零点
c.在区间1e,1内有零点;在区间(1,e)内无零点[]
d.在区间1e,1内无零点,在区间(1,e)内有零点
4.函数f(x)=ex+x-2的零点所在的一个区间是()
a.(-2,-1) b.(-1,0) c.(0,1) d.(1,2)
5.若方程x2-3x+mx+m=0的两根均在(0,+)内,则m的取值范围是()
a.m1 b.01 d.0
6.函数f(x)=(x-1)ln(x-2)x-3的零点有()
a.0个 b.1个 c.2个 d.3个
7.函数y=3x-1x2的一个零点是()
a.-1 b.1 c.(-1,0) d.(1,0)
8.函数f(x)=ax2+bx+c,若f(1)0,f(2)0,则f(x)在(1,2)上零点的个数为( )
a.至多有一个 b.有一个或两个 c.有且仅有一个 d.一个也没有
9.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
a.(-1,0) b.(0,1) c.(1,2) d.(2,3)
10.求函数y=x3-2x2-x+2的零点,并画出它的简图.
【总结】
20xx年数学网为小编在此为您收集了此文章高一数学教案:用二分法求方程的近似解,今后还会发布更多更好的文章希望对大家有所帮助,祝您在数学网学习愉快!
上和下数学教案篇6
一、教学目标
(一)知识与技能
理解加减法的含义,能够正确理解图意,写出相关的算式,并能够熟练地口算6、7的加减法。
(二)过程与方法
在数一数、算一算、说一说等活动中理解算理,学会应用。
(三)情感态度和价值观
在活动中体验成功的快乐。
?目标分析】学生通过一些活动,进一步理解和掌握加法和减法算式的含义,熟练计算得数是6和7的加法以及6和7以内的减法。
二、教学重难点
教学重点:理解加减法的含义,能够正确理解图意,写出相关的算式,并能够熟练地口算6、7的加减法。
教学难点:理解算理,学会应用。
三、教学准备
课件等。
四、教学过程
(一)以旧引新
1.看图列加减算式。
2.听写口算。
4+3=2+5=3+3=7-6=6-3=
1+5=7-3=6-4=1+6=7-0=
?设计意图】通过复习看图列式,唤醒学生已有的知识经验,并让学生进一步的理解加减法的含义,学会从不同角度观察同一幅图,提出问题列出“一图四式。”在让学生说出得数的同时,说一说自己的算法,不仅可以体会算法多样化,还可以提高学生的语言表达能力。
(二)基础练习
1.同桌合作,哪两张点子图合起来是6?并说一说算式。
预设:2+4=6,4+2=6;3+3=6;1+5=6,5+1=6。
2.独立完成,哪两张点子图合起来是7?并写出算式。
预设:1+6=7,6+1=7;2+5=7,5+2=7;3+4=7,4+3=7。
3.做找朋友游戏。
把算式、得数分别发给学生,拿算式的学生去找拿得数学生,或者拿得数的学生去找拿算式的学生,并要说:我的朋友在哪里?相应的学生要说:你的朋友在这里。
?设计意图】让学生独立完成同类的题目,以检查学生对知识的掌握情况,同时达到了复习6、7的加减法的目的。
(三)活学活用
1.完成教材第6题。
(1)先让学生独立完成学习内容,由组长进行判断。
(2)出示转盘,让学生说得数。
2.独立完成45页第11题。
学生之间进行判断。
3.合作完成44页第9题。
抽卡片说减法算式。比如,两位学生分别抽出2和7,说出减法算式7-2=5。
4.完成45页第10题。
计算比赛,看谁算得又对又快。
?设计意图】通过游戏让学生在轻松的氛围下巩固6、7的分解、组成,并优化算法,为学生进行6和7的口算练习做准备。通过计算比赛,让学生熟练掌握1~7的加减法计算。
(四)挑战自我
完成教材45页第12题。
1.学生独立完成后在组内进行展示。
2.在全班进行展示。
?设计意图】通过观察得出规律,加深学生对加减法含义的理解,培养学生分析问题的能力和细心观察善于思考的良好习惯,为后面学习6和7的解决问题做准备。
(五)归纳梳理
这节课我们练习了有关6和7相关的加减法知识,在看图解决问题时有什么困难吗?
上和下数学教案最新6篇相关文章:
★ 据枪教案最新6篇
★ 保暖教案最新6篇