教案的结构应该有逻辑性,便于教学过程的展开,教案的编写应该符合教育部门的标准和要求,录取选题网小编今天就为您带来了铝的性质教案7篇,相信一定会对你有所帮助。
铝的性质教案篇1
教学内容:教科书第60~61页,例1、例2、
练一练,练习十一第1~3题。
教学目标:
1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。
教学重点:让学生在探索中理解分数的基本性质。
教学过程:
一、导入新课
1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。
2、出示例1图。
你能看图写出哪些分数?你是怎样想的?说出自己的想法。
二、教学新课
1、教学例1。
(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
(2)你其中哪几个分数是相等的'吗?你是怎么知道这三个分数相等的?
(3)演示验证。
2、教学例2。
(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。
(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)
(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?
(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。
(6)为什么要“0”除外呢?
(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。
(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。
3、完成练一练。
(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?
(2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?
三、巩固练习
1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?
2、完成第2题。独立完成,交流想法。
四、课题总结
今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?
铝的性质教案篇2
教学目标:
1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。
2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。
3、在数学探究活动中树立学习数学的信心和兴趣。
教学重点:小数的性质。
教学难点:理解小数的性质。
教具学具准备:课件、练习纸。
教学过程:
一、创设情境,激发兴趣
师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。
生1:法术失灵了。
生2:0.1,0.10,0.100米这三个长度一样长。
老师板书:0.1米,0.10米,0.100米
二、主动探素,体会领悟
1、初步感知小数的性质。
师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。
拿出老师提供的空白练习纸,把你的想法写下来。
(1)学生动手写下来。
(2)学生汇报。
生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。
生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。
老师适时板书:0.1米=0.10米=0.100米。
(3)观察0.1=0.10=0.100初步认识小数的性质。
师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。
生1:在小数的后面加上一个0或加上两个0,小数大小是一样。
生2:在小数的末尾添上0,小数大小不变。
生3:在小数的末尾去掉0,大小是一样的。
2、深化认识小数的性质。
(1)纯小数中比一比
师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。
练习纸:
两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。
三个大小相等的正方体,分别平均分成10份、100份、1000份。
生动手写小数,涂一涂,比一比,师适时板书。
(2)混小数中比一比
师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?
出示一组混小数,让学生写小数,比一比。
师:大屏幕上的涂色部分应该用哪两个小数来表示?
生:1.2和1.20
师:它们相等吗?
生:看涂色部分是一样大的。
师动态演示两个阴影部分相等。师:你还能举出这样的例子吗?
生举例:如1.5=1.50,2.6=2.60
师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。
(3)小结小数的性质,揭示课题。
生1:小数的后面无论添上几个0,它都不变。
生2:小数的末尾添上0,去掉0,大小都不变。
根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
师:这就是我们今天来学习的内容:小数的性质(板书课题)
3、探究小数性质的内涵
师:下面请看到大屏幕,
这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20xx变成15.2。(借助数位顺序表,动画演示添0,去0的过程)
4、教学小数性质的应用
(1)化简小数
师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?
生汇报,如:109.900中末尾的2个0可以去掉。
师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),
出示例3,化简小数:0.70 105.0900
生独立完成,汇报,师讲评。
0.70=0.7 105.0900=105.09
(2)改写小数
师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)
出示教学例4,不改变数的大小,把下面各数写成三位小数。
0.2 4.08 3
三、应用新知、解决问题。
1、做一做
(1)化简下面各数。
0.40 1.850 2.900 0.080 12.000
(2)不改变数的大小,把下面各数写成三位小数。
0.9 30.04 5.4 8.18 14
2、辨一辨:
因为0.2=0.20,所以0.2和0.20没有区别。
3、填一填
把0.9改写成计数单位是千分之一的数是(),把800个0.001化简是()。
四、总结交流
通过本节课的学习,你有什么收获?
板书设计:
小数的性质
小数的末尾添上“0”或去掉“0”,小数的大小不变。
1分米10厘米100毫米
0.1米=0.10米=0.100米
0.1=0.10=0.100
0.3=0.30
1.2=1.20
铝的性质教案篇3
教学目的:
理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好实现知识教育与思想教育的有效结合。
教学难点:
理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。
教学准备:
板书有关习题的幻灯片。
教学过程:
一、复习
1.出示
在括号里填上适当的数:
指名说一说结果,并说一说你是根据什么填的?
二、课堂练习:
1.自主练习第4题。
学生先独立做,教师巡视,并个别指导,集体订正。
教师板书题目中的线段,指名让学生板演。
在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)
怎样找出相等的`分数?
让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?
然后要求学生在书上把这几个相应的点找出来。指名板演。
2.自主练习第5题。
先让学生独立做,教师巡视。个别指导。
指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。
教师根据学生的回答选择几个题目进行板书。
3.自主练习第6题。
先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。
集体订正。指名说一说自己的计算过程和结果。
教师根据学生的回答选择几个题目进行板书。
4.自主练习第7题。
学生独立做。教师要求有困难的学生分组讨论,教师个别指导。
集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。
5.自主练习第8题。
学生先独立做。
集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?
铝的性质教案篇4
教学内容:
人教版《义务教育课程标准实验教科书数学》五年级(下册)75—78页。
设计思路:
?分数的基本性质》是人教版《义务教育课程标准实验教科书数学》五年级(下册)第四单元《分数的意义和性质》的第三节内容。它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课的教学重点是理解和掌握分数的基本性质,并能运用分数的基本性质解决实际问题。教材共安排了两道例题、“做一做1、2题”等。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。
教学目标:
1.通过教学理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
2.引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
3.渗透初步的辩证唯物主义思想教育,使学生收到数学思想方法的熏陶,培养探究的学习态度。
教学重点:
理解和掌握分数的基本性质。
教学难点:
应用分数的基本性质解决实际问题。
教学方法:
直观演示法、讨论法等。
学法:
合作交流、自主探究。
教学准备:
每位学生准备三张同样大小的正方形(或长方形)的纸片;教师:长方形(或正方形)的纸片、ppt课件等。
教学过程:
一.创设情景,激发兴趣
(课件出示)1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
( )( )( )3.填空:1÷2= ( ) (1×2)÷(2×2)=( )( )
二.大胆猜想,揭示课题
学生大胆猜想:在除法里有商不变的性质,在分数里会不会有类似的性质存在呢?(生答:有!)这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三 .探索研究,验证猜想
1. 动手操作,验证性质。
(1)学生拿出三张同样大小的正方形(或长方形)纸片,分别平均分成4份、8份、12
份,并分别给其中的1份、2份、3份涂上色,把涂色部分用分数表示出来。 图(略)????引导学生观察、思考:你发现了什么?
(2)小组合作:①观察、分析、比较在组内交流你的发现。
②合作交流,各抒己见。
123③选代表全班汇报、交流,师相机板书:4812
123(3)合作讨论: 为什么相等? 4812
①以小组为单位思考讨论:(引导)它们的分子、分母各是按照什么规律变化的? ②观察它们的分子、分母的'变化规律,在组内用自己的话说一说。
2.分组汇报,归纳性质。
a.从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。
(根据学生回答
b.从右往左看,分数的分子和分母又是按照什么规律变化的?
(根据学生的回答)
c.有与这一组探究的分数不一样的吗?你们得出的规律是什么?
d.综合刚才的探究,你发现什么规律?
(4)引导学生概括出分数的基本性质,回应猜想。
对这句话你还有什么要补充的?(补充“零除外”)
讨论:为什么性质中要规定“零除外”?
(5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。
师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。
3.慧眼扫描(下列的式子是否正确?为什么?)(课件出示)
33×263(1) ==(生: 的分子与分母没有同时乘以2,分数的大小改变。) 555555÷515(2) = = (生: 的分子除以5,分母除以6,除数的大小不同,分数1212÷6212
的大小改变。) 11×331==(生:的分子乘以3,而分母除以3,没有同时乘或除以,1212÷3412(3)
分数的大小改变。) 22×x2x(4)==(生:x在这里代表任意数,当x=0时,分数无意义。) 55×x5x
四.回归书本,探源获知
1.浏览课本第75—78页的内容。
2.看了书,你又有什么收获?还有什么疑问吗?(指名汇报、交流)
3.分数的基本性质与商不变性质的比较。
(1)小组合作:讨论分数的基本性质与商不变性质的异同。
(2)小组内交流。
(3)选代表全班交流、汇报。
(4)小结归纳:分数的基本性质与商不变性质内容相同,只是名称不同罢了!
4.自主学习并完成例2,请二名学生说出思路。
五.巩固深化,拓展思维(ppt演示文稿出示下列题目)
1.想一想,填一填。
33×( )988÷( )() 55×( )( )2424÷( )3
学生口答后,要求说出是怎样想的?
2.在下面( )内填上合适的数。
要求:后二题采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。
3.思维训练(选择你喜爱的一道题完成)
3(1)的分子加上6,要使分数的大小不变,分母应加上多少? 5
(2)1/a=7/b(a、b是自然数,且不为0),当a=1,2,3,4??时,b分别等于几?
讨论:a与b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?
(3)把6/20、70/100、45/50、1/2和4/5化成分母相同而大小不变的分数。
思考:分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。
六.全课小结
本节课你收获了什么?同桌交流分享你获取知识的快乐!(汇报全班交流)
七.布置作业
p77—78练习十四第1、5、8题。
教学反思
“分数的基本性质”是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行学习的。这节课用“猜想——验证——反思”的方式学习分数的基本性质,是学生在大问题背景下的一种研究性学习。这不仅对学生提出了挑战,而且对教师也提出了挑战。教学中创设学生熟悉的情景,组织学生自主活动,进行主动探究,体会知识的形成过程,体验学习的快乐。通过鼓励学生大胆猜想,让学生动手操作、观察、分析、比较、讨论、合作交流等探究活动,围绕牵动教学主线的“猜想”,开展自主、探究式学习,以验证自己的猜想,发现、总结、概括出“分数的基本性质” ,并应用于实践解决简单的实际问题,做到学以致用,发展学生思维,提高学生学习数学的兴趣,感受学习数学的乐趣,培养学生乐于探究的人生态度。
本节课教学设计突出的特点是学法的设计。从“创设情境、激发兴趣;大胆猜想、揭示课题;探索研究、验证猜想;回归书本、探源获知;巩固深化、拓展思维”到“全课小结”每一个环节完全是为学生自主探究、合作交流学习而设计的。通过教学总结了自己的得与失如下:
1. 创设情境,可以更好地激发学生的学习兴趣,学生有了这样的学习兴趣,我想这节课已经成功了一半。因为兴趣是最好的老师!
2.学生在操作中大胆猜想。
新课标积极倡导学生 “主动参与、乐于探究、勤于思考”,以培养学生获取知识、分析和解决问题的能力。因此我由学生的猜想入手,可以最大限度的调动学生“验证自己猜想”的积极性和主动性,接下来通过学生:动手操作、观察、比较、分析、讨论、合作交流、探究等活动都是为了验证学生自己的猜想,这些环节充分发挥了学生的主动性、积极性,从而凸显学生在学习中的主体地位。教师在教学过程成为学生学习的引导者、支持者、服务者。同时创设猜想的情境,学生通过动手操作、观察、比较、分析、讨论、合作交流的探究方式来经历数学,获得感性经验,进而理解所学知识,完成知识创造过程。并且也为学生多彩的思维、创设良好的平台,由于学生的经历不同,认识问题的角度不同,促使他们解决问题的策略多样化,使生生、师生评价在价值观上都得到了发展。
3.学生在自主探索中科学验证。
铝的性质教案篇5
设计说明
1.注重情境创设,激发学生的学习兴趣。
伟大的科学家爱因斯坦说过:“兴趣是最好的老师。”也就是说一个人一旦对某个事物产生了浓厚的兴趣,就会主动地去求知、去探索、去实践,并在求知、探索、实践中产生愉快的情绪,因此教学时要重视兴趣在智力开发中的作用。本课时的教学通过分饼这一故事情境来创设一种和谐、愉悦的气氛,激发学生的学习兴趣和探究新知的积极性。听教师讲完故事之后,学生能说出三个孩子分到的饼的大小是一样的,并能非常流利地说出三个孩子分别分到每张饼的,,。接着教师提问设疑,导入新课。
2.突出学生的主体地位,在实践操作中掌握新知。
学生是学习的主体,教师要时刻关注学生的主体地位。在探究分数的基本性质的过程中,给予学生充分的学习空间,让学生自主探究,经历折一折、画一画、剪一剪、比一比的过程,得出分数的基本性质,体验成功的快乐。
课前准备
教师准备 ppt课件
学生准备 若干张同样大小的圆形纸片 彩笔
教学过程
⊙故事引入
1.教师讲故事。
师:老师给大家讲一个分饼的故事,你们想听吗?(想)三毛家有三兄弟,三兄弟都特别爱吃饼。一天,妈妈买回3张同样大小的饼,准备分给他们三兄弟吃,妈妈先把第一张饼平均分成两份,取出其中的一份给了大毛;二毛看见了,说:“太少了,我要吃两份。”妈妈点点头,把第二张饼平均分成四份,取出其中的两份给了二毛;三毛连忙说:“我最小,我要比他们多吃一些,我要吃四份。”妈妈又点点头,把第三张饼平均分成八份,取出其中的四份给了三毛。
大毛、二毛、三毛都满意地笑了,妈妈也笑了。
设计意图:借助故事给学生创设一个温馨的学习情境,自然导入新课,迅速吸引学生的注意力,激发学生的学习兴趣。
2.探究验证。
(1)提出猜想。
师:同学们,你们知道三兄弟之间到底谁分得的饼多吗?
生:同样多。
师:这只是大家的猜想,大家的猜想对不对呢?下面就让我们当一次小数学家,一起来验证这个猜想吧!
(2)验证猜想。
请同学们拿出课前准备好的圆形纸片,模拟一下妈妈给三兄弟分饼的情境。
①折一折:把每张圆形纸片都看作单位“1”,分别把它们平均折成2份、4份、8份。
②涂一涂:在折好的圆形纸片上分别把其中的1份、2份、4份涂上颜色,并用分数表示出来。
③剪一剪:把圆形纸片中的涂色部分剪下来。
④比一比:把剪下的涂色部分重叠,比一比。
师:通过比较,结果是怎样的?
生:同样大。
设计意图:通过自主猜想、自主验证、自主发现,让学生在折一折、涂一涂、剪一剪、比一比、说一说的实践活动中把静态的知识转化为动态的求知过程,经历分数的基本性质的形成过程。
3.揭示课题。
师:三兄弟分得的饼同样多,那妈妈是用什么办法来满足他们的要求并且又分得那么公平的呢?这就是我们今天要学习的内容:分数的基本性质。(师板书,生齐读课题)
⊙探究新知
1.观察比较,探究规律。
(1)请同学们观察,比较三个分数的大小。
师:三兄弟分得的饼同样多,那么这三个分数的大小是怎样的呢?(相等)
师:从这里我们可以知道,三兄弟分得的饼和剩下的饼同样多,都是一张饼的一半。
(2)请同学们仔细观察,这三个分数什么变了,什么没变?(分子、分母变了,大小没变)
师:这三个分数的分子、分母都不一样,大小却相等,这其中到底蕴藏着什么奥秘呢?
(课件出示:比较它们的分子和分母)
①从左往右看,是按照什么规律变化的?
②从右往左看,又是按照什么规律变化的?小组内讨论,交流一下你们的发现。
师:我们从左往右看,谁愿意说一说自己的发现?(分数的分子和分母同时乘相同的数,分数的大小不变)
师:我们从右往左看,谁愿意说一说自己的发现?[分数的分子和分母同时除以相同的数(0除外),分数的大小不变]
师:你们能把这两个发现合并成一句话吗?[分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变]
师:请同学们思考一下,这个数为什么不能是0?同桌之间讨论。(因为在分数中,分母不能为0,并且在除法里,0不能作除数,所以这个数不能是0)
(3)教师总结分数的基本性质。(板书)
铝的性质教案篇6
教学内容:
苏教版小学数学教材第十册,第95~96页,例1、例2,分数的基本性质。
教学目标:
1、通过直观操作体会分数的基本性质的实际含义,能正确叙述分数的基本性质。
2、能正确理解分数的基本性质,能应用分数的基本性质,把一个分数化成指定分母而大小不变的分数。
3、创设情境,让学生经历提出问题,发现规律的探究过程,培养学生的观察、比较、抽象、概括等思维能力。
教具、学具:4张同样大小的纸条/每人
教学过程:
教学环节与教学内容
学生学习活动
教师教学活动
一、
复习准备:
1、出示:
除法
分数表示
小数表示
1÷2
2÷4
3÷6
2、启思引入。
口算。
回忆、口答分数与除法的关系。
回忆并口述商不变的规律。
提出问题。
板书。谈话引导。
“用分数表示时,你是根据什么来做的?”
“观察用小数表示的结果,体现了什么规律?”
“完成上题后,你产生了哪些疑问?”
二、
进行新课:
1、直观验证
2、发现规律
(1)探索
(2)应用
==
==
==
(3)探索:分子、分母同时除以一个相同的数(“0”除外)分数的大小就不变。
(4)概括规律。
3、组织练习。
(1)判断:
=()
=()
=()
=()
(2)说一说,和有什么关系?
(3)说一说,商不变的性质和分数的基本性质有什么关系?
4、教学例2。
用纸条操作、验证,并展示。
思考、口答。
讨论、交流。
填空、交流。
交流,发现“(零除外)”。
讨论、交流。
口述。
理解、记忆。
判断、口答。
交流,
交流。
尝试解答。
集体交流。
“你能直观验证一下==吗?”
“你能从操作过程中体会到这三个分数为什么会相等吗?”
“你能再写一个统它们相等的分数吗?”“写的时候你是怎样想的?”
“你发现了什么规律?”
“怎样填才能又对又快?
总结规律。
“一定要分子、分母同时乘一个相同的数(”0“除外)分数的大小就不变吗?”
“你是怎样发现的?”
“能把它们合成一句话吗?”
揭示、板书课题。
指导。
巡视、个别辅导。
评讲。
三、
课堂小结:
反思、回顾、整理、交流。
“今天这节课,我们一起学习了什么内容?你知道了些什么?它有什么作用?”
四、
巩固练习:
练习十八1
练习十八2
练习十八3
先操作,再比较。
先判断,再说理。
指名口答。
“这题验证了什么性质?”
教后反思
铝的性质教案篇7
一、 教材
根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:
1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:
一是基于对课程标准的理解。
?义务教育数学课程标准(20xx年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。
二是基于对教材的认识。
?分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
三是基于对学情的认识。
作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。
据此,
我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。
二、教法
课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。
三、说学法
学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
四、说教学过程
本着让学生
“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:1. 联系旧知,质疑引思。 2.自主操作,验证猜想 3.知识应用,巩固提高4.回顾总结,完善认知。
环节一:联系旧知,质疑引思。
“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。
环节二:操作体验,概括规律
1.观察发现,提出猜想。
通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想
2.举例操作,验证猜想。
课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。
3.概括性质,深化理解
通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。
4.运用规律,完成例2
尝试运用发现的规律,解决问题。
环节三:知识应用,巩固提高
在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。
环节四:回顾总结,完善认知
通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。
有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。
铝的性质教案7篇相关文章: